A novel fluffy conductive polypyrrole nano-layer coated PLLA fibrous scaffold for nerve tissue engineering.

نویسندگان

  • Lin Jin
  • Zhang-Qi Feng
  • Mei-Ling Zhu
  • Ting Wang
  • Michelle K Leach
  • Qing Jiang
چکیده

In this study, a novel three-dimensional fluffy PPy conductive fibrous scaffold (3D-cFSs) was fabricated by electrospinning technique combined with situ surface polymerization. Chemical compositions, morphology were characterized by fourier transform infrared (FTIR) and scanning electron microscopy (SEM). The results showed that the average diameter of PPy coated PLLA fibers in the 3D-cFSs was 2.086 microm, the thickness of PPy nano-layer was -45 nm. These PPy coated PLLA fibers were in discrete state, the size of interconnected pores in the 3D-cFSs was from 50 microm to 100 microm, this unique structure ensured that cells can entry into internal of 3D-cFSs smoothly without any other extra help to achieve three-dimensional cell culture (3D-culture). Rat pheochromocytoma 12 (PC12) cells (as model cell) were cultured in the 3D-cFSs to evaluate its potential application for nerve tissue engineering. The interaction between cell and scaffold was test by detecting the cell proliferation, viability, and morphology. After 3 days culture, the number of PC12 in 3D-cFSs were much higher than that on the conductive fibrous meshes (cFMs) and well developed cell-fibers constructs were observed from fluorescence image and SEM of PC12 in the central of 3D-cFSs. These results showed that the 3D-cFSs provided cell 3D-culture, and improved cell growth. Therefore, we suggest that the 3D-cFSs maybe a suitable scaffold for the nerve tissue engineering as cells substrate to apply electrical stimulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ساخت و ارزیابی خواص مورفولوژیکی، شیمیایی و زیست‌تخریب‌پذیری داربست نانو فیبری پلی-ال-لاکتیک-اسید (PLLA) و کاربرد آن در مهندسی بافت عصب

    Background & Aims: Nerve tissue engineering (NTE) is one of the most promising methods for the treatment of the central nervous system (CNS) neurodegenerative diseases. The three-dimensional distribution and growth of the cells within the porous of the scaffold have a significance clinical role in the NTE field. Scaffolds used in tissue engineering, not only must have a good performance, bu...

متن کامل

Cytocompatibility of a conductive nanofibrous carbon nanotube/poly (L-Lactic acid) composite scaffold intended for nerve tissue engineering

The purpose of this study was to fabricate a conductive aligned nanofibrous substrate and evaluate its suitability and cytocompatibility with neural cells for nerve tissue engineering purposes. In order to reach these goals, we first used electrospinning to fabricate single-walled carbon-nanotube (SWCNT) incorporated poly(L-lactic acid) (PLLA) nanofibrous scaffolds and then assessed its cytocom...

متن کامل

Microstructure and properties of nano-fibrous PCL-b-PLLA scaffolds for cartilage tissue engineering.

Nano-fibrous scaffolds which could potentially mimic the architecture of extracellular matrix (ECM) have been considered a good candidate matrix for cell delivery in tissue engineering applications. In the present study, a semicrystalline diblock copolymer, poly(epsilon-caprolactone)-block-poly(L-lactide) (PCL-b-PLLA), was synthesized and utilized to fabricate nano-fibrous scaffolds via a therm...

متن کامل

PLLA/HA Nano composite scaffolds for stem cell proliferation and differentiation in tissue engineering

Abstract Due to their mulitpotency, Mesenchymal stem cells (MSCs), have the ability to proliferate and differentiate into multiple mesodermal tissues. The aim of this study was to isolate MSCs from human Umbilical Cord (hUCMSCs) to determine their osteogenic potential on nanofibrous scaffolds. To this end, Poly (L-lactic acid) (PLLA)/Nano hydroxyapatite (HA) composite nanofibrous scaffolds were...

متن کامل

Ex Vivo Expansion of Umbilical Cord Blood Hematopoietic Stem Cells on Collagen- Fibronectin Coated Electrospun Nano Scaffold

Background and Objective: Umbilical Cord blood (UCB) hematopoietic stem cell (HSC) transplantation is a therapeutic approach for the treatment of malignant and non-malignant hematologic disorders due to ease of collection, lack of risk for donors and lower levels of infection. Moreover, it is considered a good alternative for bone marrow HSC transplantation. The main limitation of their use is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical nanotechnology

دوره 8 5  شماره 

صفحات  -

تاریخ انتشار 2012